Universida_{de}Vigo

Subject Guide 2017 / 2018

IDENTIFY	ING DATA			
Physics: I	undamentals of Mechanics and Thermodynamics			
Subject	Physics:			
	Fundamentals of			
	Mechanics and			
	Thermodynamics			
Code	V05G300V01102			
Study	Degree in			
programm	e Telecommunications			
	Technologies			
	Engineering			
Descriptor	s ECTS Credits Choose Year		Quadm	iester
	6 Basic education 1st		lst	
Teaching	Spanish			
language				
Departme				
Coordinato	r Chiussi , Stefano			
Lecturers	Boutinguiza Larosi, Mohamed			
	Chiussi , Stefano			
	Fernández Doval, Angel Manuel			
E-mail	schiussi@uvigo.es			
Web	http://faitic.uvigo.es			
General	Introduction to the basic concepts on the general laws of Mechanics and Thermody	namics as	s well as t	to their
description	application to the resolution of problems in engineering.			
Competer	ncies			
Code				
B3 CG3:	The knowledge of basic subjects and technologies that enables the student to learn	new meth	ods and	
techn	ologies, as well as to give him great versatility to confront and adapt to new situatio	ns	000 0110	
B5 CG5:	The knowledge to perform measurements, calculations, assessments, appraisals, te	chnical ev	aluations	studies.
repor	ts, task scheduling and similar work to each specific telecommunication area.			, scaares,
B6 CG6	The aptitude to manage mandatory specifications, procedures and laws			
C3 CF3/F	B3: Comprehension and command of basic concepts about the general laws of med	nanics the	rmodyna	mics
electi	omagnetic fields and waves and electromagnetism and their application to solve En	aineerina	nrohlems	
	wareness of the need for long-life training and continuous guality improvement sho	wing a fle	xihle one	n and
ethic	attitude toward different oninions and situations, narticularly on non-discrimination	hased or	nsex rac	e or
reliai	on as well as respect for fundamental rights accessibility etc	i buscu oi	i sex, ide	0
Learning	outcomes			
Expected i	esults from this subject	Ira	ining and	l Learning
			Resu	lts
Understan	ding and mastering of the basic concepts on the general laws of Mechanics and	B3	C3	
Thermody	namics.			
Ability to u	se the basic instrumentation to measure physical quantities.	B3	C3	D3
		B5		
		B6		
Ability to e	valuate experimental data.	B3	C3	
		B5		
Ability to s	olve the elementary technical problems in engineering.	B3	C3	
Contents				
Tonic				
1 Physica	guantities and units. The International			

System. 2.- Vectorial tools for Mechanics.

3.- Point Kinematics. 4.- Point Kinetics. 5.- Statics. 6.- Oscillations. 7.- Wave motion. 8.- Zero principle of Thermodynamics. Temperature. 9.- First principle of Thermodynamics. 10.- Second principle of Thermodynamics. Lab 1.- Measurement instruments. Error and uncertainty. Estimation of uncertainties in direct measurements. Lab 2.- Measurement of the reaction time to a given stimulus. Measurement of the gravitational acceleration by means of a pendulum. Estimation of uncertainty in indirect measurements. Lab 3.- Verification of Hooke's Law. Linear fit. Lab 4.- Longitudinal and transversal standing waves. Measurements by linearization of nonlinear relations and linear fit. Graphical representation of measurement results. Lab 5.- Simple harmonic motion. Free standing oscillation of a spring. Measurements by linearization of non-linear relations and linear fit. Graphical representation of measurement results.

Planning				
	Class hours	Hours outside the classroom	Total hours	
Master Session	22	22	44	
Case studies / analysis of situations	6	12	18	
Troubleshooting and / or exercises	15.5	46.5	62	
Laboratory practises	9	13.5	22.5	
Multiple choice tests	0.5	0	0.5	
Short answer tests	1	0	1	
Practical tests, real task execution and / or simulated.	2	0	2	

*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies

	Description
Master Session	Prior personal work:
	-Preliminary reading of the proposed bibliography on the subject.
	During the lectures:
	-Presentation of theoretical concepts.
	-Experimental demonstrations.
	-Audiovisual presentations.
	Ulterior personal work:
	-Revision of theoretical concepts.
	-Weak-point identification.
	-Consult the bibliography.
	Through this methodology, competencies CG3, CE3, CG5, CG6 are worked out.
Case studies / analysis	Application of the theoretical concepts to simple cases and situations.
of situations	During the lectures:
	-Solving of examples.
	Ulterior personal work:
	-Solving of cases and situations from the bibliography.
	-Identification of weak points which require tutorial aid.
	Through this methodology, competencies CG3, CE3, CG5, CG6 are worked out.

Troubleshooting and / or exercises	Solving of average-difficulty problems involving one or more theoretical concepts. During the lectures: -Presentation of solving strategies and techniques by solving example-problems. Personal work: -Solving of problems from the bibliography. -Identification of weak points which require tutorial aid.
	Through this methodology, competencies CG3, CE3, CG5, CG6 are worked out.
Laboratory practises	Prior personal work: -Preparation of the practical session by studying the corresponding guide and reviewing the theory. During the practical session: -Description of the experiment highlighting which theoretical concepts are involved. -Training on material and instrumentation handling. -Execution of the experiment. -Preliminary result processing. Ulterior personal work: -Processing and analysis of the results. -Weak-point identification. -Consult the bibliography.

Through this methodology, competencies CG3, CE3, CG5, CG6 and CT3 are worked out.

Personalized attenti	on
Methodologies	Description
Master Session	Questions will be solved by the lecturers in their respective tutorial-aid time. Tutorial aid will be given: individually or in small groups (typically of two or three students), by appointment to the corresponding lecturer (unless stated otherwise) and, preferably, in the place and timetable of the corresponding lecturer which will be published at the beginning of the semester. The appointment shall be arranged either by e-mail or in person at the beginning or end of a lecture.
Case studies / analysis of situations	Questions will be solved by the lecturers in their respective tutorial-aid time. Tutorial aid will be given: individually or in small groups (typically of two or three students), by appointment to the corresponding lecturer (unless stated otherwise) and, preferably, in the place and timetable of the corresponding lecturer which will be published at the beginning of the semester. The appointment shall be arranged either by e-mail or in person at the beginning or end of a lecture.
Troubleshooting and / or exercises	Questions will be solved by the lecturers in their respective tutorial-aid time. Tutorial aid will be given: individually or in small groups (typically of two or three students), by appointment to the corresponding lecturer (unless stated otherwise) and, preferably, in the place and timetable of the corresponding lecturer which will be published at the beginning of the semester. The appointment shall be arranged either by e-mail or in person at the beginning or end of a lecture.
Laboratory practises	Questions will be solved by the lecturers in their respective tutorial-aid time. Tutorial aid will be given: individually or in small groups (typically of two or three students), by appointment to the corresponding lecturer (unless stated otherwise) and, preferably, in the place and timetable of the corresponding lecturer which will be published at the beginning of the semester. The appointment shall be arranged either by e-mail or in person at the beginning or end of a lecture.

Assessment				
	Description	Qualification	n Trair Lea Re	ning and arning esults
Multiple choice tests	Multiple-choice questions about theoretical concepts. Solving of elementary cases and situations related to the topics in both the classroom and laboratory syllabi.	25	B3 B5 B6	C3
Short answer tests	Short answer questions about theoretical concepts. Solving of elementary cases and situations related to the topics in both the classroom and laboratory syllabi.	25	B3 B5 B6	C3
Practical tests, real task execution and or simulated.	Practical tests: Solving of problems involving one or more theoretical topics. /Execution of real and simulated measurements. Real- and simulated- measurement result processing.	50	B3 B5 B6	C3

Other comments on the Evaluation

(This is a translation, in case of any discrepancy or dispute, the original Spanish version shall prevail.)

Following the particular guidelines of this degree, the students taking this subject will be offered two alternative assessment systems: continuous assessment and single end-of-semester assessment.

It will be assumed that a student chooses continuous assessment if he or she takes and hands the third assessment exercise in (see below) and that he or she chooses single end-of-semester assessment if he or she does not hand the aforementioned exercise in. Once the results of this exercise are handed in, it will be understood that the student has taken the current term's examination call and he or she will be qualified according to the following criterion, regardless of whether he or she takes the final test or not.

1) CONTINUOUS ASSESSMENT

Continuous assessment consists of the exercises detailed below in this guide which are not retakeable, i.e, if a student is not able to take them in the scheduled date the teaching staff will not be required to repeat them.

As a general rule, the marks of each exercise will be published before the next one. The marked exercises may be revised, during the tutorial-aid hours of the corresponding lecturer , along the fourteen days following the publication date of the marks.

The marks obtained in the tests will be only valid for the academic term they have been obtained.

First assessment exercise:

a1) Experimental laboratory exercise comprising the execution of actual measurements and the processing of the results, consisting in taking the experimental laboratory class number 3, individually processing (during the last 30 minutes) the assessable results specified in the corresponding experiment guide and handing them in at the end of the class (mark: between 0 and 1 point).

Second assessment exercise:

b1) Combined test with multiple-choice and short-answer questions and exercises. Questions about theoretical concepts. Solving of elementary cases and situations related to the topics in the classroom syllabus (mark: between 0 and 1 point).

Length: 30 minutes during one of the theory or problem-solving lectures. Its date will appear in the assessment test schedule that the Academic Board of the Degree will approve.

Third assessment exercise:

c1) Experimental laboratory exercise comprising the execution of actual measurements and the processing of the results, consisting in taking the experimental laboratory class number 5, individually processing (during the last 30 minutes) the assessable results specified in the corresponding experiment guide and handing them in at the end of the class (mark: between 0 and 1 point).

Fourth exercise, continuous assessment final test:

Combined test with:

d1) questions and exercises, multiple-choice and short-answer questions, (mark: between 0 and 5 points distributed among them)

e1) solving of one or two problems, (mark: between 0 and 3.4 points distributed between them)

f1) solving of a problem comprising the execution of real or simulated measurements and the processing of the results (mark: between 0 and 1.6 points).

Length: 2 hours in the subject's official examination date.

Overall mark calculation.

g1) will be calculated as the sum of the marks obtained in blocks b1), d1) and e1) plus the lowest of 2 points and the sum of blocks a1), c1) and f1)

 $g1 = b1 + d1 + e1 + min\{2, a1 + c1 + f1\}$

The overall mark will be the lowest of 10 points or g1)

overall mark = min{ 10, g1 }

2) SINGLE END-OF-SEMESTER ASSESSMENT

Final overall test:

Combined test with:

d2) questions and exercises, multiple-choice and short-answer questions, (mark: between 0 and 5 points distributed among them)

e2) solving of one or two problems, (mark: between 0 and 3.4 points distributed between them)

f2) solving of a problem comprising the execution of real or simulated measurements and the processing of the results (mark: between 0 and 1.6 points).

Length: 2 hours in the subject's official examination date.

Overall mark calculation:

g2) will be calculated as the sum of the marks obtained in blocks d2), e2) and f2)

g2 = d2 + e2 + f2

The overall mark will be g2)

overall mark = g2

3) RESIT

Resit exam:

Combined test with:

d3) questions and exercises, multiple-choice and short-answer questions, (mark: between 0 and 5 points distributed among them)

e3) solving of one or two problems, (mark: between 0 and 3.4 points distributed between them)

f3) solving of a problem comprising the execution of real or simulated measurements and the processing of the results (mark: between 0 and 1.6 points).

Length: 2 hours in the subject's official resit date.

Final mark calculation:

The students who did not pass the subject and attend the resit exam will obtain a mark according to the following criteria:

3A) Students who had chosen continuous assessment

g3A) will be calculated as the sum of the marks obtained in blocks b1), d3) and e3) plus the lowest of 2 points and the sum of blocks a1), c1) and f3)

 $g3A = b1 + d3 + e3 + min\{2, a1 + c1 + f3\}$

The overall mark will be the lowest of 10 points or g3A)

overall mark = min{ 10, g3A }

3B) Students who had chosen end-of-semester assessment

g3B) will be calculated as the sum of the marks obtained in blocks d3), e3) and f3)

g3B = d3 + e3 + f3

The overall mark will be g3B)

overall mark = g3B

NOTES:

I) All of the aforesaid calculations will be performed with a resolution equal to or better than one hundredth of a point (0,01 point).

II) The overall marks will be rounded to the nearest multiple of 0,1 point (one tenth of a point); if the two nearest multiples of 0,1 point are equidistant, the overall mark will be rounded to the higher of them.

III) The mark scale is established on the understanding that the minimum overall mark necessary to pass the subject is 5,0 points.

Sources of information

Basic Bibliography

H.D. Young y R.A. Freedman, Sears-Zemansky. Física Universitaria, 9, 11, 12 o 13, Addison-Wesley,

Profesorado presente y pasado de la asignatura., Guiones de las prácticas de «Física Fundamentos de Mecánica y Termodinámica», 2017-2018, 2017

Oficina Internacional de Pesas y Medidas (BIPM), Sistema Internacional de Unidades SI, 8, Centro Español de Metrología, 2008

Complementary Bibliography

I.N. Bronshtein, K.A. Semendiaev, Manual de Matemáticas para Ingenieros y Estudiantes, (cualquier edición), MIR, Raymond A. Serway, John W. Jewett, Física, Tomo 1, 3, Thomson, 2003

Paul A. Tipler, Física, Tomo 1, 5, Reverté, 2005

W. Edward Gettys, et al., Física Clásica y Moderna, Mc Graw-Hill, 1991

Douglas C. Giancoli, **Física para universitarios, Tomo 1**, 3, Prentice-Hall, 2002

Marcelo Alonso, Edward J. Finn, Física, Addison-Wesley, 1995

Susan M. Lea, John R. Burke, Física. La naturaleza de las cosas, Tomo 1, Paraninfo, 2001

Ambler Thompson, Barry N. Taylor, **NIST Special Publication 811, «Guide for the Use of the International System of Units (SI)**», 2008, Narional Institute of Standards and Technology, 2008

Comité Conjunto para las Guías en Metrología (JCGM), Vocabulario Internacional de Metrología VIM, 3, Centro Español de Metrología, 2012

Recommendations

Subjects that continue the syllabus Fundamentals of Sound and Image/V05G300V01405 Power Electronics/V05G300V01625 Fundamentals of Acoustics Engineering/V05G300V01531

Subjects that are recommended to be taken simultaneously

Mathematics: Linear algebra/V05G300V01104 Mathematics: Calculus 1/V05G300V01105

Other comments

To adequately follow this subject, it is highly advisable to master the contents of high-school subjects on Mathematics and Physics.