Universida_{de}Vigo

Subject Guide 2017 / 2018

IDENTIFY	NG DATA			
Programn	ning I			
Subject	Programming I			_
Code	V05G300V01205			
Study	Degree in		,	
programme	e Telecommunications			
	Technologies			
	Engineering			
Descriptors	s ECTS Credits	Choose	Year	Quadmester
	6	Mandatory	1st	2nd
Teaching	Spanish			
language				
Departmer	t			
Coordinato	r Rodríguez Hernández, Pedro Salvador			
Lecturers	García Palomares, Ubaldo Manuel			
	Pazos Arias, José Juan			
	Ramos Cabrer, Manuel			
	Rodríguez Hernández, Pedro Salvador			
E-mail	pedro.rodriguez@uvigo.es			
Web	http://faitic.uvigo.es			
General description	The aim of the course is to provide students with basi	c skills to program	in a high leve	el language.

Competencies

Code

- B4 CG4: The ability to solve problems with initiative, to make creative decisions and to communicate and transmit knowledge and skills, understanding the ethical and professional responsibility of the Technical Telecommunication Engineer activity.
- B9 CG9: The ability to work in multidisciplinary groups in a Multilanguage environment and to communicate, in writing and orally, knowledge, procedures, results and ideas related with Telecommunications and Electronics.
- C6 CE6/T1: The ability to learn independently new knowledge and appropriate techniques for the conception, development and exploitation of telecommunication systems and services
- C12 CE12/T7: The knowledge and use of basics in telecommunication networks, systems and service programming.
- D2 CT2 Understanding Engineering within a framework of sustainable development.
- D4 CT4 Encourage cooperative work, and skills like communication, organization, planning and acceptance of responsibility in a multilingual and multidisciplinary work environment, which promotes education for equality, peace and respect for fundamental rights.

Learning outcomes	
Expected results from this subject	Training and Learning Results
Express the solution of a simple problem by means of algorithms using top-down design.	C12
Identify the data needed to solve a problem and associate them with appropriate datatypes based on their features (size, range, associated operators)	C12
Code simple algorithms using the basic types of statements: assignment, selection and iteration.	C12
Declare and define functions with a proper use of parameters.	C12
Handle I/O operations and file management.	C12
Define and use structured data types.	C12
Define and manage dynamic data structures (lists, stacks, queues and trees).	C12
Create modules and library functions and use them in programs.	C6
	C12
Predict the result of a sequence of statements, knowing the input data.	C12
Handle basic tools in an integrated development environment: text editor, compiler, linker, debugger and documentation tools.	C6

Contents	
Topic	
Lecture 1: The algorithm and the programming	1. The algorithm and its different representations: flowchart, pseudocode,
languages.	natural language. 2. Algorithm implementation by means of a programming language. Programming paradigms: modular programming and structured
	programming. 3. C language and the function main(). Source code and object code. The
	compiler and the interpreter.
	4. Input/output exercises: human-computer interface. The standard input/output files: stdin, stdout. The #include directive. Library functions.
Lecture 2: Grammar and basic elements of C language.	1. The alphabet. Recursive derivations of sintactically valid sequences. Identifiers, numbers. Symbolic constants: The #define directive and
	macros. Use of the const qualifier. 2. Variables and their attributes: name, value, address, types. Pointer variables. Declaration of simple variables and pointers:
	the direction & and reference * operators.
	3. The sizeof operator. Arithmetical operators. The assignment operator.
	Automatic type conversion and by means of the cast operator.
	Syntactic notation for expressions and statements. Simple and
	compound statements.
Lecture 3: Sequential, iteration	Evaluation of expressions with relational operators and boolean
and selection statements	operators.
	2. Decision statements: switch, if, nested if. The ternary operator (?:)
	3. The iterative statements and their importance in modular programming:
-	while, do while and for. The break and continue statements.
Lecture 4: Arrays	1. Declaration of array variables. Memory allocation for multidimensional
	arrays.
	2. Unidimensional arrays and pointers: pointer arithmetic. Arrays of characters: the end of string character. Library functions for dealing with
	arrays of characters.
	3. Variable length arrays in standard C99.
	4. Dynamic memory allocation for 1 and 2 dimension arrays: the malloc(),
	calloc(), realloc() functions.
Lecture 5: Functions	1. Functions declaration and definition. Local, static and global variables. Function return value.
	Actual and formal parameters. Parameter passing by value and by
	reference: use of pointers. Command line arguments passing to function main().
	3. Creation and use of function libraries. Library functions for strings
	handling.
	 Modular compilation. The conditional directives in a header file. Recursive functions: advantages and disadvantages.
Lecture 6: struct variables	struct variables: global declaration. Fields of a struct. Pointers to struct.
Lecture 0. Struct variables	The . (Point) and -> (arrow) operators.
	2. struct and a pointer to struct as a funcion parameter and return value.
	3. typedef with non trivial declarations.
	4. More complex data structures: nested structs, array of structs.
	5. Dynamic management in creating linear lists, circular lists and trees.
	6. Insertion and removal of variables in a list.
Lecture 7: Files	1. Text files: fopen() and fclose() functions.
	2. Different file input/output functions: fprintf (), fscanf(), fgets(), feof().
	3. Functions with direct access to files.
	4. Information management between files and lists.
	5. Node structure in simple linked lists.6. File to list conversion and vice versa.
	ט. דווכ נט ווכנ נטוועפוטוטוו מווע עונפ עפוטמ.

Planning			
	Class hours	Hours outside the classroom	Total hours
Introductory activities	2	0	2
Master Session	24	24	48
Laboratory practises	12	14	26
Projects	8	24	32

Practical tests, real task execution and / or simulated.	5	15	20	
Other	5	15	20	
Reports / memories of practice	0	2	2	

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Introductory activities	Introduction to theoretical and practical activities.
Master Session	Plenary sessions that include the realisation of works and programs.
	Through this methodology the competencies CE12 and CT2 are developed.
Laboratory practises	During the first weeks of the term the student codifies, compiles and documents programs guided
	by the instructor. Some of these activities will be evaluated.
	Through this methodology the competencies CG4, CE12 and CT2 are developed.
Projects	In the last part of the term, the student must complete a low complexity project, under the
	instructor supervision, which includes individual and in group activities.
	Through this methodology the competencies CG4, CG9, CE6, CE12, CT2 and CT4 are developed.

Personalized attention			
Methodologies	Description		
Master Session	The professors will provide individual attention to the students along the term, solving their doubts and questions. Questions will be answered during the master sessions or during tutorial sessions. The professors will establish timetables for this purpose at the beginning of the term. This schedule will be published on the subject website.		
Laboratory practises	The professors will provide individual attention to the students along the term, solving their doubts and questions about the laboratory practises. Questions will be answered during the lab sessions or during tutorial sessions. The professors will establish timetables for this purpose at the beginning of the term. This schedule will be published on the subject website.		
Projects	The professors will provide individual attention to the students along the term, solving their doubts and questions about the project. Questions will be answered during the supervising sessions or during tutorial sessions. The professors will establish timetables for this purpose at the beginning of the term. This schedule will be published on the subject website.		

Assessment	Description	Qualification	Tr	aining	and
	Description	Qualification		_earnii	
				Result	ts
Projects	The student will develop a project in the last weeks of the term, and will	25	В4	C6	D4
	submit the C code implementing it The project will be assessed in the final		В9	C12	
	laboratory test.				
Practical tests, real	Every 4 weeks, the student will take a practical individual test in the	20	В4	C12	
task execution and	laboratory.				
/ or simulated.	At the end of the term, the student will take a comprehensive final practical				
	test.				
	All of them will consist in the development of a program in the computer.				
	Those tests will assess the student's progress with the laboratory practices				
	and with the project.				
Other	Every 4 weeks, the student will take an exam that may consist of:	50	В4	C12	
	- short answer questions				
	- multiple choice questions				
	- troubleshooting and / or exercises				
	This exam will assess the student's mastership of the concepts introduced in	1			
	the master sessions. At the end of the term, the student will take a				
	comprehensive final exam on the whole contents of the subject.				
Reports / memories	After the second week in the project development, the student will submit a	5	В4	C12	D4
of practice	description of its design, in the form of a pseudocode or a flowchart.				
•	At the end of the term, the student will submit a report, including the				
	project's documentation.				

Other comments on the Evaluation

The **course planning in lectures** and the estimated time of the **most important assessment milestones** is detailed below:

• Week 1: Theory introduction + Lectures 1 and 2

- Week 2: Lecture 3 | Practice introduction + Practice 1
- Week 3: Lectures 3 and 4 | Practice 2
- Week 4: Lecture 4 + **Theory Test 1** (PT1) | **Laboratory Test 1** (PP1)
- Week 5: Lecture 4 | Practice 3
- Week 6: Lecture 5 | Practice 4
- Week 7: Lecture 5 | Practice 45
- Week 8: Lecture 5 + **Theory Test 2** (PT2) | **Laboratory Test 2** (PP2)
- Week 9: Lectures 5 and 6 | Practice 6
- Week 10: Lecture 6 | Practice fulfilment + Project (1h)
- Week 11: Lecture 6 | Project (2h) + Project design submission (psudocode or flowchart)
- Week 12: Lecture 7 + Theory Test 3 (PT3) | Project (1h) + Laboratory Test 3 (PP3)
- Week 13: Lecture 7 | Project (2h)
- Week 14: Project (2h)
- Before the final exams, project submission (coding and documentation)
- Finals: Final Theory Test (PTF) Final Laboratory Test (PPF)

In all courses the School offers two evaluation modes: **Continuous evaluation** and **comprehensive evaluation**. The student must opt to the latter one explicitly, no latter than the week before the Laboratory Test 2 (PT2) is taken. The **continuous evaluation** will be considered as "passed" if both the student has submitted a report (design, coding and documentation) for the project developed from the 10th to the 14th week, and the final grade (NFC) obtained by the student is at least 5. This final grade is the harmonic mean between the theory and laboratory tests grades, calculated as follows: NFC = (2*NTC*NPC)/(NTC+NPC) where:

- Theory Grade by Continuous Evaluation: NTC = 0.1*PT1+0.1*PT2+0.2*PT3+0.6*PTF
- Practice Grade by Continuous Evaluation: NPC = 0.1*PP1+0.1*PP2+0.2*PP3+0.5*PPF+0.1*PDD

The Final Theory Test (PTF) is an exam that may consist of short answer questions and/or multiple choice questions and/or troubleshooting and/or exercises. It assesses the mastership of the contents introduced in the lectures. The Final Practice Test (PPF) the proper coding in C to deal with a medium level project. While the project development is a group activity, it is assessed individually. Indirectly, the PPF also assesses the mastership of the contents introduced in the lectures and the laboratory practices.

The **Design and Documentation Test** (PDD) assesses the quality of the pseudocode or the flowchart describing the project's design (submitted the 11th week), and project's documentation report submitted before the final exams. The use of the harmonic means implies that the course is not passed if either NPC or NTC has a grade under 3.3. No test in the continuous evaluation mode is repeatable; that is, the instructor has no obligation to reschedule an evaluated activity missed by a student.

The date and procedures for the revision of the grades will be known before the evaluation tests. The students will have the chance of reviewing the grades preferably within two weeks after the evaluation.

In order to pass the course by the **comprehensive evaluation mode**, the student must submit a project report (design, coding and documentation) similar to the one submitted by the continuous evaluation students, and the final grade obtained by the student must be at least 5. This mode will consist of the same exams as the continuous evaluation one (although with different weight in the final grade), that is, an exam that may consist of short answer questions and/or multiple choice questions and/or troubleshooting and/or exercises (PTF) and a laboratory test (PPF, which will include the evaluation of the project). The final grade is the harmonic mean between the theory and practice grades, calculated as follows: NFF = (2*NTF*NPF)/(NTF+NPF)

where:

- Theory Grade by Comprehensive Evaluation: NTF = PTF
- Practice Grade by Comprehensive Evaluation: NPF = 0.9*PPF+0.1*PDD

Both the **continuous evaluation grade** (NFC) and the **comprehensive evaluation grade** (NFF) will be computed to all students that take the final tests (theory and practice). The final grade will be the higher one. A "No Present" grade will be granted:

- If the student opts for the continuous evaluation mode, when no test is taken after the Laboratory Test 1 (PP1)
- If the student opts for the comprehensive evaluation mode, when no final test (PTF and PPF) is taken.

University regulations allow students to take an additional test to approve the course (extra evaluation). In order to pass the course using this extra evaluation, the student must submit a project report (design, coding and documentation) similar to the one submitted by the continuous evaluation students, and the final grade obtained by the student must be at least 5. This extra evaluation will consist of an exam that may consist of short answer questions and/or multiple choice questions and/or troubleshooting and/or exercises (Extra Theory Test) and a laboratory test which will include the evaluation of the project (Extra Laboratory Test)). The final grade is the harmonic mean between the theory and practice grades, calculated as follows:

NFE = (2*NTE*NPE)/(NTE+NPE)

where:

• Theory Grade by Comprehensive Evaluation (NTE): if the student takes the Extra Theory Test, NTE will be the grade achieved in that test:

NTF = PTF

Otherwise, NTE will be the theory grade obtained for the theoretical tests in his/her regular evaluation.

• Practice Grade by Comprehensive Evaluation (NPE): if the student takes the Extra Laboratory Test, NPE will be the weighed addition the grade achieved in that test plus the grade obtained inf the design and documentation test:

NPE = 0.9*PPE+0.1*PDD

Otherwise. NPE will be the practice grade obtained for the practical tests in his/her regular evaluation.

In both final and extra evaluation, and in both evaluation modes, in case of failure to fulfil the mandatory requirement of submitting the project report, the final grade (computed according to the corresponding formula) will be upper-bounded to a maximum value of 4.5 points.

All the partial and final grades will only be valid for the term the student is enrolled to, that is, in case the student repeates the subject, he or she will not retain any of the grades of the previous year.

If plagiarism is detected in any of the works/test taken, the student will receive a failing grade (0) and the professors will report the fact to the school authorities.

Sources of information

Basic Bibliography

Manuel Caeiro Rodríguez, Enrique Costa Montenegro, Ubaldo García Palomares, Cristina López Bravo, J, **Practicar Programación en C**, 2014,

Brian W. Kernighan & Dennis M. Ritchie, El Lenguaje de Programación C, 1986 (reimpreso en 1995),

Complementary Bibliography

Osvaldo Cairo Battistuti, Fundamentos de Programación, 2006,

José Rafael García-Bermejo Giner, Programación Estructurada en C, 2008,

James L. Antonakos & Kenneth C. Mansfield Jr., Programación Estructurada en C, 1997 (reimpreso en 2004),

Jorge A. Villalobos S. & Rubby Casallas G., **Fundamentos de Programación: Aprendizaje Activo Basado en Casos**, 2006,

Recommendations

Subjects that continue the syllabus

Programming II/V05G300V01302

Subjects that it is recommended to have taken before

Informatics: Computer Architecture/V05G300V01103

Other comments

Programming II course continues this course in the second year.	