Universida_{de}Vigo

Guía Materia 2015 / 2016

DATOS IDEN	TIFICATIVOS				
Sistemas Int	egrados Avanzados de Fabr	icación			
Asignatura	Sistemas Integrados Avanzados de Fabricación				
Código	V04M141V01202				
Titulacion	Máster Universitario en Ingeniería Industrial				
Descriptores	Creditos ECTS		Seleccione	Curso	Cuatrimestre
	3	'	OP	1	2c
Lengua Impartición	Castellano				
	Diseño en la ingeniería				
Coordinador/a	Pérez García, José Antonio				
Profesorado	Pérez García, José Antonio				
Correo-e	japerez@uvigo.es				
Web					
Descripción					

Competencias

Código

general

- A1 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- A3 Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- A5 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- C1 CET1. Proyectar, calcular y diseñar productos, procesos, instalaciones y plantas.
- C3 CET3. Realizar investigación, desarrollo e innovación en productos, procesos y métodos.
- CET8. Ser capaz de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- C13 CTI2. Conocimiento y capacidad para proyectar, calcular y diseñar sistemas integrados de fabricación.
- D9 ABET-i. Un reconocimiento de la necesidad y la capacidad de participar en el aprendizaje de por vida.

Resultados de aprendizaje	
Resultados previstos en la materia	Resultados de
	Formación y
	Aprendizaje
· Conocimiento avanzado CAM, superficies 3D y simulación de proceso.	A1
- Conocimiento de los medios de producción, y de manutención así como sus configuraciones y utilizació	n A3
de sistemas de comunicación industriales.	A5
· Conocimiento de sistemas de inspección con y sin contacto. Aplicación a integración de función de	C1
verificación unitaria y muestral al proceso productivo.	C3
- Conocimiento y optimización de distribución de los medios de fabricación (medios de producción,	C8
manipuladores, robots industriales, medios de inspección y puestos manuales)	C13
- Conocimiento de las tecnologías para la fabricación sostenible.	D9

Con	ten	id	05

Tema

Tema 1 Diseño de Procesos de Fabricación	Tema 1.1 Ingeniería Concurrente
	Tema 1.2 Industrialización de Productos
Tema 2 Planificación de Sistemas de Fabricació	nTema 2.1 CAPP, TG, MRPI, MRPII
Multiproducto	Tema 2.2 Análisis del Flujo de la Producción, Secuenciación de
	Operaciones y Nivelado de la Producción
Tema 3 Sistemas de Fabricación	Tema 3.1 Configuración de los Sistemas de Fabricación
	Tema 3.2 Equipos de Fabricación y Manutención
Tema 4 Gestión del Mantenimiento Industrial	Tema 4.1 Mantenimiento Correctivo, Preventivo y Predictivo
	Tema 4.2 TPM
Tema 5 Optimización de los Sistemas de	Tema 5.1 Mejora Continua
Fabricación	Tema 5.2 Prevención de Riesgos Laborales
	Tema 5.3 Fabricación Sostenible
Prácticas 1 a 6 Trabajo de la Asignatura	Diseño y Fabricación de un Componente
	Nota Estas clases prácticas serán sustituidas por clases de resolución de
	problemas en pizarra en caso de mantenerse la actual falta de medios en
	los laboratorios del Area IPF

Planificación			
	Horas en clase	Horas fuera de clase	Horas totales
Sesión magistral	12	24	36
Prácticas de laboratorio	12	12	24
Pruebas prácticas, de ejecución de tareas reales y/o	1	13	14
simuladas.			
Pruebas de respuesta corta	1	0	1

^{*}Los datos que aparecen en la tabla de planificación son de carácter orientativo, considerando la heterogeneidad de alumnado

Metodologías	
	Descripción
Sesión magistral	Exposición básica de contenidos. Resolución de ejercicios, problemas y casos. Evaluación del
	proceso de aprendizaje mediante pruebas objetivas
Prácticas de laboratorio	6 Clases prácticas, de dos horas de duración cada una, a realizarse en los Talleres del Area IPF en la
	EEI, sede Campus y/o Aula Informática de la EEI Sede Campus designada por la Dirección de la EEI

Atención personalizada			
Metodologías	Descripción Exposición básica de contenidos. Resolución de ejercicios, problemas y casos. Evaluación del proceso de aprendizaje mediante pruebas objetivas		
Prácticas de laboratorio			
Pruebas	Descripción		
Pruebas prácticas, de ejecución de tareas reales y/o simuladas.	Exposición básica de contenidos. Resolución de ejercicios, problemas y casos. Evaluación del proceso de aprendizaje mediante pruebas objetivas		

	Descripción	Calificación		Resultados de Formación y Aprendizaje	
Pruebas prácticas, de ejecución de tareas reales y/o simuladas.	Trabajo de la Asignatura	70	A1 A3 A5	C1 C3 C8 C13	D9
Pruebas de respuesta corta	Examen Final	30	A1 A3 A5	C1 C3 C8 C13	D9

Otros comentarios sobre la Evaluación

La asignatura se evalúa en base a dos parámetros: **Examen Final** y **Trabajo de la Asignatura**. Aprobarán la asignatura aquellos alumnos que aprueben (obteniendo al menos el 50% de la puntuación máxima obtenible) cada uno de estos dos parámetros evaluables

- **PRIMERA CONVOCATORIA**: Se realizará un "<u>Examen Final de la Asignatura</u>". Además, a lo largo del curso, los alumnos desarrollarán un proyecto de diseño y fabricación de un componente, lo que constituirá el "<u>Trabajo de la Asignatura</u>". El seguimiento de este trabajo constituirá la Evaluación Continua
- SEGUNDA CONVOCATORIA: Los alumnos deberán realizar el "Examen Final de la Asignatura". Además, en aquellos

casos en los que los alumnos no hayan realizado, y aprobado, el "<u>Trabajo de la asignatura</u>" (en este apartado se incluye a todos aquellos alumnos que han renunciado a la Evaluación Continua) deberán realizarlo y entregarlo nuevamente

OTRAS CONSIDERACIONES:

• En los Exámenes de Teoría, cada respuesta errada supondrá una penalización sobre la Nota Final del Examen. Esta penalización será de la misma magnitud que el valor que aportaría dicha pregunta si esta hubiese sido acertada (así, una pregunta cuya valoración es de "1" punto, será valorada con "+1" si la respuesta es acertada, con "0" si no es respondida y con "-1" si la respuesta es incorrecta).

Fuentes de información

NJ, Computer aided and integrated manufacturing systems,

Kalpakjian, Manufacturing engineering and technology, Pearson Education,

Groover, Automation, production systems, and computer-integrated manufacturing, Pearson,

Recomendaciones

Otros comentarios

Compromiso ético: Se espera que el alumno presente un comportamiento ético adecuado. En el caso de detectar un comportamiento no ético (copia, plagio, utilización de aparatos electrónicos no autorizado, y otros) se considera que el alumno no reúne los requisitos necesarios para superar la materia. En este caso la calificación global en el actual curso académico será de suspenso (0.0).