Universida_{de}Vigo

Guía Materia 2016 / 2017

DATOS IDEN	TIFICATIVOS					
Física: Siste	mas térmicos					
Asignatura	Física: Sistemas					
	térmicos					
Código	V09G290V01306					
Titulacion	Grado en					
	Ingeniería de la					
	Energía					
Descriptores	Creditos ECTS	Seleccione	Curso	Cuatrimestre		
	6	FB	2	1c		
Lengua	Castellano					
Impartición						
	Ingeniería mecánica, máquinas y motores térmicos	y fluidos				
Coordinador/a	Vázquez Vázquez, Manuel					
Profesorado	Vázquez Vázquez, Manuel					
Correo-e	mvazquez@uvigo.es					
Web	http://faitic.uvigo.es/					
Descripción	pción El objetivo de la asignatura es que los alumnos adquieran los conocimientos necesarios para poder abordar					
general						
	sistemas y como afectan las interacciones las propiedades térmicas de las sustancias que los configuran. Se					
	busca con un enfoque clásico macroscópico entender, perfeccionar y mejorar el rendimiento de aquellos					
-	procesos en los que haya intercambio de energía er	n general y termica	en particular.			

Competencias

Código

- C4 Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y ondas y electromagnetismo, y su aplicación para la resolución de problemas propios de la ingeniería.
- D1 Capacidad de interrelacionar todos los conocimientos adquiridos, interpretándolos como componentes de un cuerpo del saber con una estructura clara y una fuerte coherencia interna.
- D2 Capacidad de desarrollar un proyecto completo en cualquier campo de esta ingeniería, combinando de forma adecuada los conocimientos adquiridos, accediendo a las fuentes de información necesarias, realizando las consultas precisas e integrándose en equipos de trabajo interdisciplinar.
- Proponer y desarrollar soluciones prácticas, utilizando los conocimientos teóricos, a fenómenos y situacionesproblema de la realidad cotidiana propios de la ingeniería, desarrollando las estrategias adecuadas.
- Para Favorecer el trabajo cooperativo, las capacidades de comunicación, organización, planificación y aceptación de responsabilidades en un ambiente de trabajo multilingüe y multidisciplinar, que favorezca la educación para la igualdad, para la paz y para el respeto de los derechos fundamentales.
- D7 Capacidad para organizar, interpretar, asimilar, elaborar y gestionar toda la información necesaria para desarrollar su labor, manejando las herramientas informáticas, matemáticas, físicas, etc. necesarias para ello.
- D8 Concebir la ingeniería en un marco de desarrollo sostenible con sensibilidad hacia temas medioambientales.

Describados do anyendiraio		
Resultados de aprendizaje Resultados previstos en la materia		ados de Formación y Aprendizaje
Conocer la base tecnológica sobre la que se apoyan las investigaciones más recientes en aplicaciones de la ingeniería termodinámica.	C4	D2 D3 D7 D8
Comprender los aspectos básicos de balance de masa y energía en sistemas térmicos.	C4	D1 D3
Conocer el proceso experimental utilizado cuando se trabaja con transferencia de energía.		D1 D2 D7 D8
Dominar las técnicas actuales disponibles para el análisis de sistemas térmicos.	C4	D3 D4

D2 D4

Contenidos	
Tema	
CONCEPTOS Y DEFINICIONES	Sistema termodinámico. Propiedades termodinámicas. Unidades. Temperatura.
LA ENERGÍA Y EL PRIMER PRINCIPIO DE LA TERMODINÁMICA	Concepto mecánico de la energía. Trabajo. Energía de un sistema. Transferencia de energía por calor. Balance de energía en sistemas cerrados. Análisis energético de ciclos.
PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE, Y COMPRESIBLE	Estado termodinámico. La relación p-v-T. Cálculo de propiedades termodinámicas. Modelo de gas ideal. Energía interna, entalpía, y calores específicos. Cálculo de variaciones de energía interna y entalpía. Procesos politrópicos.
ANÁLISIS ENERGÉTICO DE UN VOLUMEN DE CONTROL	Conservación de la masa. Conservación de la energía. Análisis de volúmenes de control en estado estacionario. Estados transitorios.
SEGUNDO PRINCIPIO DE LA TERMODINÁMICA.	Formulación del Segundo Principio. Irreversibilidades. Aplicación a ciclos termodinámicos. Escala Kelvin de temperaturas. Rendimientos máximos. Ciclo de Carnot.
ENTROPÍA	Desigualdad de Clausius. La propiedad termodinámica entropía. Variación de entropía. Cálculo de entropía. Procesos reversibles. Balances de entropía en sistemas cerrados y abiertos. Procesos politrópicos. Rendimientos isoentrópicos de máquinas térmicas. Transferencias de energía en procesos de flujo estacionario reversible.

Planificación			
	Horas en clase	Horas fuera de clase	Horas totales
Sesión magistral	17.5	35	52.5
Resolución de problemas y/o ejercicios	12.5	52.5	65
Prácticas de laboratorio	15	0	15
Seminarios	5	10	15
Pruebas de respuesta larga, de desarrollo	2.5	0	2.5

^{*}Los datos que aparecen en la tabla de planificación son de carácter orientativo, considerando la heterogeneidad de alumnado

Metodologías	
	Descripción
Sesión magistral	Exposición por parte del profesor de los contenidos de la materia objecto de estudio. Bases en las
	que se sustenta. Relación con otras materias. Aplicaciones tecnológicas
Resolución de	Resolución de problemas-ejemplo. Revisión de los problemas que se les manda hacer a los alumnos
problemas y/o ejercicios	a lo largo del curso
Prácticas de laboratorio	Experimentación de procesos reales en el laboratorio que complementan los contenidos de la
	materia.
Seminarios	Resolución de dudas de los contenidos teóricos de la materia. Discusión participativa de los
	alumnos en relación a la comprensión de los conceptos e ideas que vertebran el contenido de la materia

Atención personalizada	
Metodologías	Descripción
Resolución de problemas y/o ejercicios	Todas estas actividades estarán tuteladas por el profesor; bien durante las horas lectivas, bien durante las horas oficiales de tutorías, o durante la revisión de las pruebas y exámenes
Prácticas de laboratorio	Todas estas actividades estarán tuteladas por el profesor; bien durante las horas lectivas, bien durante las horas oficiales de tutorías, o durante la revisión de las pruebas y exámenes
Seminarios	Todas estas actividades estarán tuteladas por el profesor; bien durante las horas lectivas, bien durante las horas oficiales de tutorías, o durante la revisión de las pruebas y exámenes

Evaluación	
Descripción	Calificación Resultados
	de
	Formación y
	Aprendizaje

Sesión magistral	Se valora la atención del alumno en la clase y su aprovechamiento continuo y progresivo de la materia. Se puntúan las respuestas de los alumnos a las preguntas hechas por el profesor así como las preguntas interesantes que hacen los alumnos.	10	C4	D1 D2 D3 D4
	RESULTADOS DE APRENDIZAJE: Comprender el concepto de Sistema termodinámico y de las propiedades termodinámicas. Unidades en las que se cuantifican las propiedades termodinámicas. Aprender a medir temperaturas. Comprender los conceptos de trabajo, calor y energía de sistemas cerrados. Transferencia de energía de sistemas. Definición de ciclo termodinámico. Aprender a definir un estado termodinámico y a calcular el valor de las propiedades termodinámicas desconocidas a partir de las relaciones entre ellas. Aprender a distinguir un gas ideal y a calcular variaciones de energía interna y entalpía. Aprender a hacer balances de energía y masa en volúmenes de control, tanto en estado estacionario como no-estacionario. Comprensión del Segundo Principio de la termodinámica. Aprender a identificar procesos reversibles e irreversibles. Comprensión de las consecuencias del ciclo de Carnot. Comprender el concepto de entropía y aprender a calcular variaciones de entropía tanto en sistemas cerrados como abiertos. Rendimientos isoentrópicos. Aplicaciones de la entropía para calcular transferencias de calor y trabajo en procesos reversibles.			D7
Resolución de problemas y/o	Para aquellos alumnos que lleven al día la resolución de los problemas y ejercicios que se encarguen a lo largo del curso. Se valora la capacidad del alumno para encontrar soluciones a dichos problemas y ejercicios.	15	C4	D1 D2 D3 D4
ejercicios	RESULTADOS DE APRENDIZAJE: Comprender el concepto de Sistema termodinámico y de las propiedades termodinámicas. Unidades en las que se cuantifican las propiedades termodinámicas. Aprender a medir temperaturas. Comprender los conceptos de trabajo, calor y energía de sistemas cerrados. Transferencia de energía de sistemas. Definición de ciclo termodinámico. Aprender a definir un estado termodinámico y a calcular el valor de las propiedades termodinámicas desconocidas a partir de las relaciones entre ellas. Aprender a distinguir un gas ideal y a calcular variaciones de energía interna y entalpía. Aprender a hacer balances de energía y masa en volúmenes de control, tanto en estado estacionario como no-estacionario. Comprensión del Segundo Principio de la termodinámica. Aprender a identificar procesos reversibles e irreversibles. Comprensión de las consecuencias del ciclo de Carnot. Comprender el concepto de entropía y aprender a calcular variaciones de entropía tanto en sistemas cerrados como abiertos. Rendimientos isoentrópicos. Aplicaciones de la entropía para calcular transferencias de calor y trabajo en procesos reversibles.			D7 D8
	e Para aquellos alumnos que realicen el 100% de las prácticas de laboratorio. Se valora la implicación del alumno en la realización de las prácticas y su capacidad para aplicar los contenidos teóricos en la realización de las prácticas experimentales.	5	C4	D1 D2 D3 D4
	RESULTADOS DE APRENDIZAJE: Comprender el concepto de Sistema termodinámico y de las propiedades termodinámicas. Unidades en las que se cuantifican las propiedades termodinámicas. Aprender a medir temperaturas. Comprender los conceptos de trabajo, calor y energía de sistemas cerrados. Transferencia de energía de sistemas. Definición de ciclo termodinámico. Aprender a definir un estado termodinámico y a calcular el valor de las propiedades termodinámicas desconocidas a partir de las relaciones entre ellas. Aprender a distinguir un gas ideal y a calcular variaciones de energía interna y entalpía. Aprender a hacer balances de energía y masa en volúmenes de control, tanto en estado estacionario como no-estacionario. Comprensión del Segundo Principio de la termodinámica. Aprender a identificar procesos reversibles e irreversibles. Comprensión de las consecuencias del ciclo de Carnot. Comprender el concepto de entropía y aprender a calcular variaciones de entropía tanto en sistemas cerrados como abiertos. Rendimientos isoentrópicos. Aplicaciones de la entropía para calcular transferencias de calor y trabajo en procesos reversibles.		_	D7 D8

Seminarios	Para aquellos alumnos que participen en todos los seminarios y que lleven al día los trabajos que se les encarguen a lo largo del curso.	10	C4	D1 D2 D3
	RESULTADOS DE APRENDIZAJE: Comprender el concepto de Sistema termodinámico y de las propiedades termodinámicas. Unidades en las que se cuantifican las propiedades termodinámicas. Aprender a medir temperaturas. Comprender los conceptos de trabajo, calor y energía de sistemas cerrados. Transferencia de energía de sistemas. Definición de ciclo termodinámico. Aprender a definir un estado termodinámico y a calcular el valor de las propiedades termodinámicas desconocidas a partir de las relaciones entre ellas. Aprender a distinguir un gas ideal y a calcular variaciones de energía interna y entalpía. Aprender a hacer balances de energía y masa en volúmenes de control, tanto en estado estacionario como no-estacionario. Comprensión del Segundo Principio de la termodinámica. Aprender a identificar procesos reversibles e irreversibles. Comprensión de las consecuencias del ciclo de Carnot. Comprender el concepto de entropía y aprender a calcular variaciones de entropía tanto en sistemas cerrados como abiertos. Rendimientos isoentrópicos. Aplicaciones de la entropía para calcular transferencias de calor y trabajo en procesos reversibles.			D4 D7 D8
Pruebas de	<u> </u>	60	C4	D1
respuesta larga, de desarrollo	RESULTADOS DE APRENDIZAJE: Comprender el concepto de Sistema termodinámico y de las propiedades termodinámicas. Unidades en las que se cuantifican las propiedades termodinámicas. Aprender a medir temperaturas. Comprender los conceptos de trabajo, calor y energía de sistemas cerrados. Transferencia de energía de sistemas. Definición de ciclo termodinámico. Aprender a definir un estado termodinámico y a calcular el valor de las propiedades termodinámicas desconocidas a partir de las relaciones entre ellas. Aprender a distinguir un gas ideal y a calcular variaciones de energía interna y entalpía. Aprender a hacer balances de energía y masa en volúmenes de control, tanto en estado estacionario como no-estacionario. Comprensión del Segundo Principio de la termodinámica. Aprender a identificar procesos reversibles e irreversibles. Comprensión de las consecuencias del ciclo de Carnot. Comprender el concepto de entropía y aprender a calcular variaciones de entropía tanto en sistemas cerrados como abiertos. Rendimientos isoentrópicos. Aplicaciones de la entropía para calcular transferencias de calor y trabajo en procesos reversibles.			D2 D3 D4 D7 D8

Otros comentarios sobre la Evaluación

Aquellos alumnos que realicen las tareas que encarga el profesor a lo largo del curso, y superen las pruebas de evaluación continua, podrán llegar al examen final con una renta de cuatro puntos sobre diez, y podrán alcanzar con la resolución del examen la nota máxima de diez.

Aquellos alumnos que no realicen las tareas que encarga el profesor a lo largo del curso, y no superen las pruebas de evaluación continua, la máxima puntuación que podrán obtener en el examen final es un seis.

Dependiendo de la disponibilidad de tiempo y programación del curso, se podrán hacer exámenes parciales de la materia.

En la convocatoria de Julio el examen puntuará sobre diez.

Calendario de exámenes:

- Convocatoria Fin de Carrera: 14/09/2016

- Convocatoria ordinaria 2º período: 12/01/2017

- Convocatoria extraordinaria Julio: 27/06/2017

Esta información se puede verificar/consultar de forma actualizada en la página web del centro: http://etseminas.webs.uvigo.es/cms/index.php?id=181

Fuentes de información

Moran, M.J. y Shapiro, H. N., Fundamentos de termodinámica técnica, Ed. Reverté,

Çengel, Yunus A., Termodinámica, MacGraw-Hill,

Recomendaciones

Asignaturas que continúan el temario

Termodinámica y transmisión de calor/V09G290V01302
Generación y distribución de energía térmica convencional y renovable/V09G290V01503
Ingeniería nuclear/V09G290V01605
Instalaciones de energías renovables/V09G290V01604
Motores y turbomáquinas térmicas/V09G290V01608
Transmisión de calor aplicada/V09G290V01606
Gestión de la energía térmica/V09G290V01706
Tecnología frigorífica y climatización/V09G290V01702

Asignaturas que se recomienda cursar simultáneamente

Mecánica de fluidos/V09G290V01305

Asignaturas que se recomienda haber cursado previamente

Física: Física I/V09G290V01102 Física: Física II/V09G290V01202

Matemáticas: Cálculo I/V09G290V01104 Matemáticas: Cálculo II/V09G290V01204