Universida_{de}Vigo

Subject Guide 2014 / 2015

111111111	\	\		/////////
IDENTIFYIN	G DATA			
Industrial c				
Subject	Industrial chemistry			
Code	V11G200V01904			
Study programme	(*)Grao en Química			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Optional	4th	2nd
Teaching language				
Department				
Coordinator	Deive Herva, Francisco Javier			
	Gago Martínez, Ana			
Lecturers	Deive Herva, Francisco Javier			
	Fernández Requejo, Patricia			
E	Gago Martínez, Ana			
E-mail	deive@uvigo.es anagago@uvigo.es			
Web	anagago@avigo.cs			
General description	,,,,,			

Competencies

Code

- A16 (*)Demostrar coñecemento e comprensión de feitos esenciais, conceptos, principios e teorías en: principios e procedementos en Enxeñaría Química
- A19 (*)Aplicar os coñecementos e a comprensión á resolución de problemas cuantitativos e cualitativos de natureza básica
- A20 (*)Avaliar, interpretar e sintetizar datos e información química
- A22 (*)Procesar datos e realizar cálculo computacional relativo a información e datos químicos
- A23 (*)Presentar material e argumentos científicos de xeito oral e escrita a unha audiencia especializada
- B1 (*)Comunicarse de forma oral e escrita en polo menos unha das linguas oficiais da Universidade
- B3 (*)Aprender de forma autónoma
- B4 (*)Procurar e administrar información procedente de distintas fontes
- B5 (*)Utilizar as tecnoloxías da información e das comunicacións e manexar ferramentas informáticas básicas
- (*)Manexar as matemáticas, incluíndo aspectos tales como análise de erros, estimacións de ordes de magnitude, uso correcto de unidades e modos de presentación de datos
- 37 (*)Aplicar os coñecementos teóricos á práctica
- B8 (*)Traballar en equipo
- B9 (*)Traballar de forma autónoma
- B10 (*) Traballar nun contexto tanto nacional como internacional
- B12 (*)Planificar e administrar adecuadamente o tempo
- B13 (*)Tomar decisións
- B14 (*) Analizar e sintetizar información e obter conclusións
- B15 (*)Avaliar de modo crítico e construtivo o entorno e a si mesmo

	ı aims

Expected results from this subject

Training and Learning
Results

(*)To know the main processes for raw materials conversion in order to obtain products and valorize them	A16 A19 A20 A22 A23	B1 B3 B4 B5 B6 B7 B8 B9 B10 B12 B13 B14 B15
(*) To know different techniques to minimize the generation of by-products and wastes	A16 A19	B1 B3 B4 B5 B6 B7 B8 B9 B10 B12 B13 B14 B15
(*)To acquire habilities on process flowsheet diagrams interpretation and design on the basis of real processes.	A16 A20 A23	B1 B3 B4 B5 B6 B7 B8 B9 B10 B12 B13 B14 B15
(*) To identify generic systems for quality management in laboratories and to know the required essential doccumentation	A16 A19 A20 A23	B1 B3 B4 B5 B6 B7 B8 B9 B10 B12 B13 B14 B15
(*)To establish analytical methodology suitable for warranting the quality of raw materials and products, as well as the pollution derived from the industrial process.	A16 A19 A20 A22 A23	B1 B3 B4 B5 B6 B7 B8 B9 B10 B12 B13 B14 B15

(*)To integrate automatized and miniaturized sys	items on the control of industrial processes.	A16 A19 A22 A23	B1 B3 B4 B5 B6 B7 B8 B9 B10 B12 B13 B14 B15
(*)To evaluate the best available techniques for a socioeconomic environment.	a desired industrial process of the galician	A16 A19 A20	B1 B3 B4 B5 B7 B8 B9 B10 B12 B14 B15
(*)To acquire the ability of designing a process for laboratory scale, on the basis of the process flow		A16 A19 A20 A22 A23	B1 B3 B4 B5 B6 B7 B8 B9 B10 B12 B13 B14 B15
To understand the role of bioengineering as an enproducts with commercial interest	nvironmentally sustainable alternative to obtain	A16 A19 A20	B1 B3 B4 B5 B6 B7 B8 B9 B10 B12 B13 B14 B15
(*)To evaluate the economic viability of industria Present Value, the Internal Rate of Return of the		A20 A22 A23	B1 B3 B4 B5 B6 B7 B8 B14 B15
Contents			
Topic			
Subject 1. Introduction to processes in Industrial Chemistry	General aspects of chemical processes. Charact sctructure of chemical industry. Facts and figure chemical industry. Process flowsheet diagrams	es of spanis	sh and european
Subject 2 Economy of industrial processes.	Preparation of budget. Analysis of costs and pro feasibility: Net Current Value, Internal Tax of Pe		

Subject 3 Biotecnological Processes.	Fundamental stages of biotechnological processes. Pretreatment of raw materials. Types of bioreactors. Product recovery and downstream strategies. Processes for the production of biofuels. Food biotechnology
Subject 4 Introduction to the petrochemical industry.	Oil reserves, types and composition. Crude refining. Types of refineries: basic structure.
Subject 5 Petrochemistry.	General flowsheet of a petrochemical refinery. Crude fractionation. Thermal cracking: coking unit. Catalytic cracking, reactors, etc. Catalytic reforming. Desulfurization.
Subject 6 Petrochemicals.	Production, characterisation and application of products obtained from a petrochemical refinery.
Subject 7 Carbon chemistry	Coal reserves, types and composition. Production of metallurgical coke. Valorisation of coke by-products. Carbon refinery.
Subject 8 The cement industry.	Raw materials and dosage. Manufacture of clinker. Control of emisions. The energy in the cement sector. Valorisation of wastes. Evaluation of the best available techniques.
Subject 9 The paper industry.	Methods for pulp mill manufacturing: Kraft process, sulfide process. Paste bleaching. Paper manufacturing. Environmental concerns of gas and liquid emisions. Paper recycling. Analysis of the best available technicians.
Subject 10 The industry of Aluminium.	Natural sources. Production of alumina. Process for aluminium manufacturing.
Subject 11 Basic elements and principles of quality.	Introduction to the control of quality. Implementation of systems of quality. Tools of quality. International Standards - ISO. Quality manual. Control of Processes quality (prime Matters, transformation and final product)

Planning			
	Class hours	Hours outside the classroom	Total hours
Master Session	26	52	78
Troubleshooting and / or exercises	5	13	18
Tutored works	5	10	15
Presentations / exhibitions	3	6	9
Outdoor study / field practices	3	6	9
Short answer tests	1	4	5
Long answer tests and development	2	14	16

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
rictioudiogics	Description
Master Session	Presentation of the general aspects of the program, focusing on the fundamental aspects with more difficulties to be understood by the students. The lecturer will give the basic material by Tema platform in order to get the students familiarized with te topic prior to the presentation in class.
Troubleshooting and / o	or After each subject, the most relevant aspects will be tackled by means of problem and questions
exercises	solving.
Tutored works	The students will carry out a work focused on the design of a process for producing some product with industrial interest, taking into account the knowledge acquired during the master sessions.
Presentations / exhibitions	The students have to defend their tutored works in front of a jury made up of lecturers from the departments of Chemical Engineering or Analytical Chemistry and/or professionals from chemical industries
Outdoor study / field practices	Different outdoor studies will be carried out throughout the course, in order to get a deeper insight into the processes explained during the master sessions. Priority will be given to top companies of our socioeconomic environment.

Personalized attention	
Methodologies	Description
Master Session	During tutoring hours, the students can ask the lecturers about any aspect of the subject. In the same way, students can communicate with the teachers via E-mail or Tema platform. The lecturers will show their availability for tutoring on the first day.
Troubleshooting and / or exercises	During tutoring hours, the students can ask the lecturers about any aspect of the subject. In the same way, students can communicate with the teachers via E-mail or Tema platform. The lecturers will show their availability for tutoring on the first day.
Tutored works	During tutoring hours, the students can ask the lecturers about any aspect of the subject. In the same way, students can communicate with the teachers via E-mail or Tema platform. The lecturers will show their availability for tutoring on the first day.

Presentations / exhibitions	During tutoring hours, the students can ask the lecturers about any aspect of the subject. In the same way, students can communicate with the teachers via E-mail or Tema platform. The lecturers will show their availability for tutoring on the first day.
Outdoor study / field practices	During tutoring hours, the students can ask the lecturers about any aspect of the subject. In the same way, students can communicate with the teachers via E-mail or Tema platform. The lecturers will show their availability for tutoring on the first day.

Assessment		
	Description	Qualification
Troubleshooting and / or	Different troubleshooting will be solved by the students at the framework of their	10
exercises	tutored works	
Tutored works	A work focused on the design of an industrially relevant process flowsheet diagram	10
	will be carried out during the term.	
Presentations / exhibitions	The tutored works will be defended against a jury composed of lecturers from the	15
	Departments of Chemical Engineering and Analytical Chemistry and/or professionals	
	from the chemical industry.	
Outdoor study / field	The students must unavoidably attend the outdoor studies in order to get a deper	10
practices	insight into the processes tackled during the master sessions. A report about	
	questions on the plants will be doned by them after each visit.	
Short answer tests	Short tests will be performed in the middel and at the end of the course. Students	10
	will be encouraged to relate new ideas with their own views, and to solve problems	
	based on the new knowledge acquired	
Long answer tests and	A final long answer test will be done at the end of the course, and the students will	45
development	have to have a minimum of 5 out of 10 to pass the course.	

Other comments on the Evaluation

Sources of information

Atkins, J.W. [Making pulp and paper], (Recurso electrónico) Tappi Press (USA) 2004.

Austin, G.T. ∏Manual de Procesos Químicos en la Industria∏, Ed. McGraw Hill, 1993.

Casey, J.P. Pulpa y papel: química y tecnología química, Ed. Noriega, 1991.

Díaz, M. □Ingeniería de bioprocesos□, Ed. Paraninfo, 2012.

Duda W.H. ☐Manual tecnológico del cemento☐, Ed. Reverté, 1995.

El-Mansi E.M.T. [Fermentation microbiology and biotechnology], Ed. CRC/Taylor & Francis, 2007.

Gani, M.S.J. □Cement and concrete□, Ed. Chapman & Hall, 1997.

Gary, J.H. ∏Refino de petróleo: tecnología y economía∏, Ed. Reverté, 1980.

Happel, J. ∏Economía de los procesos químicos∏, Ed. Reverté, 1981.

Herranz Agustín, C. [Química para la ingeniería], Ed. UPC, 2010.

Ramos Carpio, M.A. [Refino de petróleo, gas natural y petroquímica], Fundación Fomento Innovación Industrial, 1997.

Rodríguez Jiménez, J. □Los controles en la fabricación de papel□, Ed. Blume, 1970.

Shuler, M.L. [Bioprocess engineering: basic concepts], Prentice Hall, 2002.

Vian Ortuño, A. □Introducción a la Química Industrial□, Ed. Reverté, 1996.Quimiometría de Guillermo Ramis Ramos, Mª Celia Gracía Álvarez-Coque. Editorial Sintesis S. A., 2001, Madrid, España.

Quality in Chemical Measurements, Training Concepts and Teaching Materials. Wolfhard

Wegscheider Chemie, Springer Verlag, 2001, Germany.

ISO 9000 Quality Systems Handbook, David hoyle, 6ª Edición, 2009, Elsevier, Amsterdam.

Recommendations

Subjects that it is recommended to have taken before

Chemical engineering/V11G200V01502