Universida_{de}Vigo

Subject Guide 2016 / 2017

IDENTIFYIN					
Heat Engine					
Subject	Heat Engines				
Code	V04M141V01341	,	,		
Study	(*)Máster			,	
programme	Universitario en				
	Enxeñaría				
	Industrial				
Descriptors	ECTS Credits		Choose	Year	Quadmester
	4.5		Optional	2nd	1st
Teaching	English	,			
language					
Department		,	'	,	
Coordinator	Porteiro Fresco, Jacobo				
Lecturers	Porteiro Fresco, Jacobo				
E-mail	porteiro@uvigo.es				
Web	<u>-</u>				
General					
description					

Competencies

Code

- C16 CTI5. Knowledge and skills for the design and analysis of thermal machines and engines, hydraulic machines and facilities for heat and industrial refrigeration
- D1 ABET-a. An ability to apply knowledge of mathematics, science, and engineering.
- ABET-c. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- D5 ABET-e. An ability to identify, formulate, and solve engineering problems.
- D11 ABET-k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Expected results from this subject	Training and
	Learning Results
- Know the technological base on which support the most recent progresses in thermal engines	C16
- Know the types, the operation and the applications of machines and engines and thermal	D1
- Capacity to realise the resolution of inherent problems to thermal machines, so much mechanical, as of	D3
broadcasts *contaminantes	D5
- Capacity for the realisation of experimental analyses to evaluate the characteristic curves of operation $\mathfrak c$ thermal engines in the different states of load.	ofD11
- Know realise designs, calculations and essays justifying his results, extracting conclusions	

Contents	
Topic	
1. Introduction to the *sitemas *motopropulsores	1.1 Definition
	1.2 Classification
2. Theoretical cycles	2.1 Introduction
	2.2 Cold air cycle
	2.3 SI cycle
	2.4 Cl cycle
	2.5 Air-fuel cycle
3. Real cycle	3.1 Differences of the real cycle front the theoretical cycle
	3.2 Peculiarities of the SI
	3.3 Peculiarities of the CI

4. Gas exchange process in the 4 stroke engine	 4.1 Introduction 4.2 volumetric Performance 4.3 Factors that affect to the volumetric performance 4.4 Technology of the renewal of the load of the 4S 4.5 State of the art and tendencies
5. Gas exchange process in the 2 stroke engine	5.1 Introduction5.2 Definitions5.3 Technology of the renewal of the load of the 2S5.4 State of the art and tendencies
6. Supercharging	 6.1 Introduction 6.2 Types 6.3 Advantages and problems 6.4 mechanical Supercharging 6.5 Turbocharging 6.6 State of the art and tendencies
7. Requirements of the mixture	7.1 Introduction 7.2 Optimum mixture 7.3 Systems of dosage 7.4 State of the art and tendencies
8. SI combustion	8.1 Introduction to the combustion 8.2 Stages of the combustion 8.3 Spark advance 8.4 Pathologies of the combustion 8.5 GDI 8.6 New trends
9. CI Combustion	9.1 Introduction to the combustion by diffusion 9.2 Stages of the combustion 9.3 DI vs IDI 9.4 Injection systems 9.5 New trends
10. Losses of heat and system of refrigeration	10.1 Introduction 10.2 Losses of heat 10.3 Components of the system of refrigeration
11. Mechanical losses and oil system	11.1 Introduction 11.2 Lubrication regimes 11.3 Mechanical losses 11.4 Components of the system

Planning			
	Class hours	Hours outside the classroom	Total hours
Practice in computer rooms	6	0	6
Laboratory practises	6	0	6
Master Session	24	0	24
Long answer tests and development	0	36.5	36.5
Jobs and projects	0	40	40
*The information in the planning table is for	guidance only and door no	at take into account the hot	organoity of the students

^{*}The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	
	Description
Practice in computer rooms	Practical classes in groups of 20 students
Laboratory practises	Practical classes in groups of 20 students
Master Session	Lesson in classroom

Description

Description	0 1161 11	
Description	Qualification	Training and
		Learning Results

Long answer tests and development	Proof written that it will be able to consist of: theoretical questions, practical questions, resolution of exercises/problems, subject to develop, etc.	70-90	C16	D1 D3 D5 D11
Jobs and projects	Works in which the student will employ the knowledges and tools purchased during the course.	30-10	C16	D1 D3 D5 D11

Other comments on the Evaluation

&*lt;*p&*gt;By agreement of the Standing committee of the School of Industrial Engineering, celebrated on 12 June 2015:&*lt;/*p&*gt;&*lt;*div&*gt;&*lt;*b*gt;&*lt;*div&*gt;&*lt;*div&*gt;&*lt;*b*gt;ethical Commitment: &*lt;/*b&*gt;*Espérase that or present student a *comportamento ethical *axeitado. No case to detect a *comportamento *non ethical (copy, *plaxio, utilisation of electronic devices *non authorised, and *outros) *considerarase that or student *non gather you necessary requirements to surpass to matter. *Neste Case to global qualification no present academic course will be of&*lt;or&*gt; suspense (0.0)&*lt;/or&*gt;.&*lt;/*div&*gt;

Sources of information

Payri, F. y Desantes, J.M., MOTORES DE COMBUSTIÓN INTERNA ALTERNATIVOS,

Heywood, John B, INTERNAL COMBUSTION ENGINES FUNDAMENTALS, Ed. Mc Graw Hill,

Muñoz, Manuel, **TURBOMÁQUINAS TÉRMICAS: Fundamentos de diseño termodinámico**, Universidad Politécnica de Madrid,

Charles F. Taylor, THE INTERNAL COMBUSTION ENGINE IN THEORY AND PRACTICE,

Recommendations