Universida_{de}Vigo

Subject Guide 2023 / 2024

IDENTIFYIN	G DATA				
Fluid mecha	anics II and CFD				
Subject	Fluid mechanics II				
	and CFD				
Code	O07G410V01922				
Study	Grado en				
programme	Ingeniería				
	Aeroespacial				
Descriptors	ECTS Credits	·	Choose	Year	Quadmester
	9		Optional	3rd	1st
Teaching	#EnglishFriendly				
language	Spanish				
	Galician				
Department					
Coordinator	Rodríguez Pérez, Luis				
	Suárez Porto, Eduardo				
Lecturers	Rodríguez Pérez, Luis				
	Suárez Porto, Eduardo				
E-mail	lurodriguez@uvigo.es				
	suarez@uvigo.es				
Web	http://aero.uvigo.es				
General	Knowledge, understanding an	d application of concer	ots and techniques of	of Fluid Mec	hanics in Aerospace
description	Engineering. Part of the subje	ct is presented as an ir	ntroduction to comp	utational flu	id dynamics which, starting
•	from a knowledge of fluid con	servation equations (al	lready acquired by s	students in p	previous subjects) allows
	the student to carry out simpl	e simulations involving	a fluid. as a means	of work.	-

English Friendly subject: International students may request from the teachers: a) resources and bibliographic references in English, b) tutoring sessions in English, c) exams and assessments in English.

Training and Learning Results Code A2 That the students know how to apply their knowledge to their work or vocation in a professional way and that they possess the competences that are usually demonstrated through the elaboration and defense of arguments and the resolution of problems within their area of study That the students have the capability to gather and interpret relevant data (usually within their area of study) to issue A3 judgments that include a reflection on relevant social, scientific or ethical issues A5 That the students develop those learning capabilities necessary to undertake further studies with a high degree of autonomy. C16 Appropriate knowledge applied to engineering: Concepts and laws that govern the processes of transfer of energy, the movement of fluids, the mechanisms of transmission of heat and the interchange of matter and its role in the analysis of the main propulsion systems in aerospace engineering. C18 Appropriate knowledge applied to the engineering: foundations of fluid mechanics; basic principles of control and automation of flight; main characteristics and physical and mechanical properties of the materials. C19 Applied knowledge of: science and technology of materials; mechanics and thermodynamics; fluid mechanics; aerodynamics and flight mechanics; navigation and air traffic systems; aerospace technology; theory of structures; airborne transportation; economy and production; projects; environmental impact. C20 Appropriate knowledge applied to engineering: mechanics of fracture of the continuous media and their dynamic behavior, fatigue of structural instability and aeroelasticity. C22 Appropriate knowledge applied to engineering: foundations of fluid mechanics that describe the flow in all regimes, to determine the distributions of pressures and forces on an aircraft. C25 Appropriate knowledge applied to engineering: methods of design calculations and aeronautical projects; use of aerodynamic experimentation and the most significant parameters in the theoretical application; management of experimental techniques, equipment and measuring instruments; simulation, design, analysis and interpretation of experimentation and operations in flight; systems of maintenance and certification of aircrafts. C26 Applied knowledge of aerodynamics; mechanics and thermodynamics, flight mechanics, aircraft engineering (fixed and rotary wings), theory of structures.

- C28 Appropriate knowledge applied to engineering: foundations of fluid mechanics that describe the flow in any regime and determine the distribution of pressures and aerodynamic forces.
- D3 Capability of oral and written communication in native lenguage
- D4 Capability of autonomous learning and information management
- D5 Capability to solve problems and draw decisions
- D6 Capabiliity for interpersonal communication
- D8 Capabiliity for critical and self-critical reasoning

D11 Show motivation for quality with sensitivity towards subjects within the scope of the studies

Expected results from this subject				
Expected results from this subject		Training and Learning		
		Res	sults	
Conocimiento y comprensión de los principales conceptos y técnicas de la Mecánica de Fluidos	A3	C16	D4	
		C18	D5	
		C19	D8	
		C22	D11	
		C28		
Capacidad para aplicar los principales conceptos y técnicas de la Mecánica de Fluidos a las	A2	C16	D3	
Ciencias de la Ingeniería	A3	C18	D4	
	A5	C19	D5	
		C20	D6	
		C22	D8	
		C25	D11	
		C26		
		C28		
Comprensión de los procedimientos básicos de la dinámica de fluidos computacional	A5	C16	D4	
		C18	D5	
		C19	D8	
		C22	D11	
		C25		
		C26		
		C28		

Contents	
Торіс	
CFD. General equations and transport	Topic 1: Summary of the general equations.
phenomena	Integral notation
	Differential notation
	Conservative form.
	Compact notation
	Most common limit models
	Most common boundary conditions
CFD. Turbulence	Topic 2: Introduction to turbulence
	Introduction
	Kolmogorov scale
	Infeasibility of direct numerical simulation
	Turbulence models:
	RANS models:
	-Reynolds and Favre averages
	 Averaged equations. Apparent Reynolds stresses. closure problem
	 Boussinesq hypothesis: algebraic models, of one equation and of two
	equations
	 Wall laws. High and low Reynolds number models
	 Reynolds apparent stress transport models
	LES Models: Description

CFD. Introduction to Computational Fluid DynamicTopic 3: FVM methods of numerical resolution of the Navier-Stokes

- equations.
- Finite Volume Methods (FVM):
- Introduction
- Discretization of the computational domain
- Discretization of fluid equations
- Discretized equations in FVM
- Discretization of boundary conditions
- incompressible flows. pressure equation
- Artificial compressibility methods
- Pressure-velocity couplingsMost common numerical resolution acceleration methods

Topic 4: Introduction to the use of different software (OpenFoam and Fluent*) for numerical simulation of fluids. Practices in computer room.

	*The use of these software will be conditioned to the availability of use licenses by of the center as well as the correct installation of the same in the assigned
	computer room
	Applications: - Laminar flow inside a cavity - Flow in a stream mixing device - Aerodynamic forces on bodies: Flow around an obstacle. laminar flow and turbulent flow Calculation of Kármán street after a blunt body Incompressible flow over airfoil Transonic flow over airfoil
	-Numerical simulation exercises/projects to be resolved more independently by students.
Fluid Mechanics II. Ideal flows. Irrotational flows.	Topic 1: Irrotational movements. Irrotationality conditions Irrotational Equations of Motion Initial and boundary conditions irrotational movement of liquids superposition principle Speed potential at great distances from an obstacle Irrotational plane motion of liquids: Elementary solutions. Current in nooks and corners. Current around a cylinder with circulation Two-dimensional irrotational motion of gases Prandtl[Meyer expansion
	Topic 2: Movements with surfaces of discontinuity Equations for the jump of fluid magnitudes in a discontinuity Normal and tangential discontinuities normal shock waves oblique shock waves
	Application: Almost one-dimensional movement of ideal fluids: Critical area. Movement in nozzles. Loading and unloading in warehouses. Shock waves. Relation of Hugoniot.
Fluid Mechanics II. One dimensional unsteady flow of ideal fluids	Topic 3: Non-stationary one-dimensional motion of ideal fluids. Effect of compressibility in liquids Opening and closing of valves. water hammer
	Equations of unsteady unidirectional motion in gases. simple waves
Fluid Mechanics II. Low Reynolds flows	Topic 4: Movement at low Reynolds numbers
	Equations. Initial and boundary conditions Application to incompressible fluids. Movements around a cylinder and a sphere Lubrication: Reynolds Equation of Lubrication 3D.
	Applications. cylindrical bearing, gas lubrication, rectangular skid,

Fluid Mechanics II. Boundary layer	Topic 5: Laminar boundary layer Incompressible laminar boundary layer. similarity solutions. Boundary layer on flat plate. Blausian solution Compressible laminar boundary layer Thermal boundary layer at low speeds
Fluid Mechanics II. Laboratory practicals	-Aerodynamic bench test: boundary layer measurement - Low speed wind tunnel test Pressure distribution on blunt body - Pressure distribution in convergent and convergent-divergent nozzles. Shock waves. sonic blocking

Planning			
	Class hours	Hours outside the classroom	Total hours
Laboratory practical	4	5	9
Lecturing	33	35	68
Project based learning	8	18.5	26.5
Practices through ICT	8	0	8
Problem solving	22	73	95
Project	0	15	15
Essay questions exam	1.5	0	1.5
Essay questions exam	1	0	1
Essay questions exam	1	0	1
*The information in the planning table	is for guidance only and does no	ot take into account the het	erogeneity of the students.

Methodologies	
	Description
Laboratory practical	Realización de las prácticas de laboratorio
Lecturing	Exposición de la teoría
	Traslación de problemas de fluidos a modelos matemáticos para ser resueltos numéricamente
Project based learning	Planteamiento y resolución numérica de problemas propuestos aplicados a flujos de fluidos
Practices through ICT	Planteamiento y resolución de modelos aplicados a flujos de fluidos
Problem solving	Resolución de problemas y/o ejercicios de forma autónoma por parte del alumno para comprender y caracterizar los distintos tipos de movimientos de fluidos y sus simplificaciones

Personalized assistance				
Methodologies	Description			
Laboratory practical	All doubts that arise throughout the development of the practices will be attended personally			
Problem solving	As far as possible, all doubts that arise during the resolution of the problems will be addressed.			
Practices through ICT	In the practices, as much as possible, we will try to organize the group of students in different practices. All doubts that arise throughout the development of the practices will be attended personally			
Tests	Description			
Project	Doubts that arise throughout the development of the project will be addressed in tutorials			

Assessment

Description	Qualification	Trainin	ig and l	earning
			Result	S
Project based learningPreparation and delivery of the proposed CFD simulation report to	20	A2 (C16	D3
the student		A3 (C18	D4
		A5 (C19	D5
		(C20	D6
		(C22	D8
		(C25	D11
		(C26	
		(C28	

Practices through ICT	Assistance and active participation in CFD practices	1.5	A2 A3 A5	C16 C18 C19 C20 C22 C25 C26 C28	D3 D4 D5 D6 D8 D11
Problem solving	Attendance to the problem solving sessions and delivery of the proposed problems. MFII	3.5	A2 A3 A5	C16 C18 C19 C20 C22 C25 C25 C26 C28	D3 D4 D5 D6 D8 D11
Essay questions exam	Realization of written tests, resolution of exercises, practical cases. MFII	30	A2 A3 A5	C16 C18 C19 C20 C22 C25 C26 C28	D3 D4 D5 D8
Essay questions exam	Realization of written tests, resolution of cases and CFD concepts.	10	A2 A3 A5	C19 C20 C26 C28	D3 D5 D8 D11
Essay questions exam	Realization of written tests, resolution of exercises, practical cases. MFII	35	A3 A5	C18 C19 C22 C25 C26	D4 D5 D8

Other comments on the Evaluation

First call:The evaluation system will be continuous assessment for all students, nevertheless the student has the right to opt for the exam-only assessment according to the procedure and the deadline established by the centre for each call, in which case they will have the possibility of taking a final exam, 5 hours long, (with a break) with a weight of 100% of the grade.

If a student participates in any of the qualifying tests within the continuous assessment, it will be considered as presented to the subject. The continuous assessment is considered until July, so the qualifications achieved in all the activities carried out previously, are maintained until the July call, it will not be saved from one year to another.

The continuous assessment of the subject will be carried out through the following tests and weights:

- 35% Written continuous assessment test on knowledge of MFII.
- 30% Written continuous assessment test on knowledge of MFII.
- 20%. Delivery of the CFD Project/s of numerical simulation proposed to the students by the teaching staff.
- 10% Continuous assessment written test on CFD knowledge
- 3.5% Attendance, delivery of problems proposed by the faculty, and active participation in practical classes and MFII problem solving.
- 1.5% Attendance, delivery of problems proposed by the teaching staff, and active participation in the CFD practice classes.

To pass the subject it will be necessary to obtain a minimum (2 out of 10), in each and every one of the tests carried out, and achieve a 5 out of 10 in the total evaluations.

Second call:All the qualifications obtained previously in each of the continuous assessment tests of the first edition can be maintained from the fist to the second call, the students are going to decide which activities are evaluated again in the second call, with the exception of evacuations concerning to attendance.

End-of -program call, exam-only assessment option with a weight of 100% of the grade.

The student is expected to exhibit appropriate ethical behaviour. In case of detecting unethical behaviour (copying, plagiarism, use of unauthorized electronic devices, for example), it will be considered that the student does not meet the necessary requirements to pass the subject. Depending on the type of unethical behavior detected, it could be concluded that the student did not achieve the necessary skills.

The use of any electronic device during the evaluation tests will not be allowed unless expressly authorized. The fact of introducing an unauthorized electronic device into the exam room will be considered a reason for not passing the subject in this academic year and the overall grade will be failed (0.0).

Sources of information
Basic Bibliography
White, F.M, Viscous fluid flow, 3rd ed., McGraw-Hill, 2006
Panton, R. L., Incompressible Flow, 4th Edition, Wiley, 2013
Anderson, Modern Compressible Flow, 3nd Ed., Mc Graw Hill, 1992
BARRERO & PÉREZ-SABORID, Fundamentos y aplicaciones de la Mecánica de Fluidos, Mc Graw Hill, 2005
BLAZEK, J., Computacional Fluid Dynamics: Principles and Applications, Elsevier, 2001
H K Versteeg and W Malalasekera, An Introduction to Computational Fluid Dynamics THE FINITE VOLUME METHOD,
2nd Ed., Prentice Hall, 2007
Complementary Bibliography
Kundu , C., Fluid Mechanics, 4th Edition,, Academic Press, 2010
SCHLICHTING, H, Boundary Layer Theory, Mc Graw Hill, 1987
FERZIGER, J., MILOVAN, P., Computational Methods for fluid Dynamics, Springer, 1999
F. Moukalled L. Mangani M. Darwish, The Finite Volume Method in Computational Fluid Dynamics An Advanced
Introduction with OpenFOAM® and Matlab®, Springer, 2016
WILCOX, Turbulence Modeling, DCW Industries, 2004
www.openfoam.com,

Recommendations

Subjects that it is recommended to have taken before

Mathematics: Mathematical methods/007G410V01301 Fluid mechanics/007G410V01402

Other comments

Dedicate the indicated time to assigned personal work, as well as resort to personal tutorials with the teacher to resolve any possible doubts that may arise during the student's personal work

A full follow-up of the subject is recommended, as well as an active attitude in the classes.