Universida_{de}Vigo

Subject Guide 2023 / 2024

IDENTIFYIN				
	tal Engineering			
Subject	Environmental			
	Engineering			
Code	P03G370V01609			
Study	Grado en			
programme	Ingeniería Forestal			
Descriptors	ECTS Credits	Choose	Year	Quadmester
	6	Optional	3rd	2nd
Teaching	Spanish			
language	Galician			
Department				
Coordinator	Ortiz Torres, Luis			
Lecturers	Ortiz Torres, Luis			
E-mail	lortiz@uvigo.es			
Web	http://www.webs.uvigo.es/lortiz			
General description	(*)metodos e sistemas de xestión medioambiental			

Training and Learning Results

Code

Expected results from this subject Expected results from this subject

Training and Learning Results

Contents	
Торіс	
A. ATMOSPHERIC POLLUTION	 A.1. ENVIRONMENTAL POLLUTANTS A.2. EFFECTS OF ATMOSPHERIC POLLUTION A.3.DESTRUCTION OF THE OZONE LAYER A.4.GLOBAL QUALITY A.4.1. Greenhouse gases A.4.2. The Kyoto Protocol TO 5. ACID RAIN A.6. OTHER CONTAMINANTS A.7.RIGHTS CORRUPTION OF POLLUTION A.8. ALTERNATIVE SOURCES OF ENERGY TO REDUCE ATMOSPHERIC
	EMISSIONS A.9. THE COGENERATION OF HEAT AND ELECTRICITY
B. RESIDUAL WATERS B.1. WATER	 B.2. MANAGEMENT SYSTEMS: B.3. PHYSICO-CHEMICAL WATER PARAMETERS B.4. RESIDUAL WATER CONTAMINANTS B.5. RESIDUAL WATER PURIFICATION SYSTEMS B.5.2. Primary treatment B.5.2.1. Physical and Chemical Treatments B.5.3. Secondary treatment B.5.3.1. Biological Treatments B.5.4. Tertiary treatment B.5.5. Miscellaneous Treatments B.6. THE ANAEROBIA DIGESTION PROCESS B.7. FLOOR TREATMENT B.8. CASE STUDY

C. URBAN SOLID WASTE	C.1. LOS R.S.U.
	C.2. TREATMENT SYSTEMS
	C.2.2. CONTROLLED SHIFT
	C.2.2.1. Landfill with controlled use
	C.2.3. COMPOUND
	C.2.4. INCINERATION
	C.2.5. PYROLYSIS
	C.2.6. COMPARISON BETWEEN MANAGEMENT SYSTEMS
D. COMPOSITION	
D. COMPOSITION	D.1. THE COMPOUND PROCESS
	D.1.1. PHYSICAL PARAMETERS
	D.1.2. COMPOUND SYSTEMS
	D.1.2.1. Indoor composting systems
	D.1.3. DEPURATION OF COMPOST
	D.1.4. COMPOST CHARACTERISTICS
	D.1.5. USING THE COPOST
	D.2. CROPS OF INTENSIVE TYPE
E. THE ANAEROBIA DIGESTION	E.1. THE ANAEROBIA DIGESTION
	E.2. PARAMETERS OF OPERATION AND CONTROL OF THE ANAEROBIC
	PROCESSES
	E.3. ANAEROBIA DIGESTION TECHNOLOGY
	E.3.1. Discontinuous digesters
	E.3.2. Continuous digesters
	E.3.2.1. Digesters with suspended biomass
	E.3.3. Two Phase Digester
	E.4. CONTROLLED VERTEDERO
	E.5. ANAEROBIA DIGESTION FACILITIES
	E.5.1. DESCRIPTION OF AN ANAEROBIA DIGESTION PLANT
	E.6. EXAMPLE OF INDUSTRIAL FACILITIES
F. THE RECYCLING	F.1. INTRODUCTION
	F.2. RECYCLED THEORY
	F.3. RECYCLING SYSTEMS
	F.4. PROBLEM OF THE RECYCLING PROCESS
	F.5. ADVANTAGES CONCERNING RECYCLING
	F.6. RECYCLING OF PAPER AND CARDBOARD
	F.6.1. PRODUCTION OF PASTE AND PAPER
	F.6.2. RECYCLING PAPER
	F.6.2.1. PREPARATION OF PAPER PASTE FROM PAPELOTE
	F.6.2.2 DISFRANCED
	F.6.2.3DEPURATION
	F.6.3.4. UNLOCKED
	F.6.3.5. REFINE
	F.6.3.6. DIVISION
	F.6.3.7. IT'S HEAVY
	F.6.3.8. DISPERSION
	F.6.3.9. DESTINED
G. TOXIC AND DANGEROUS WASTE	G.1. IDENTIFICATION AND QUANTIFICATION OF RTP.
	G.2. PRODUCTION MANAGER RELATIONSHIP
	G.1.1. Obligations of the RPT Producer
	G.1.1.1. Authorization request
	G.2.1.2. Packaging and Labeling of Hazardous Wastes
	G.2.1.3. Storage of hazardous waste
	G.2.1.4. Annual statement
	G.2.2. OBLIGATIONS OF SMALL PRODUCERS OF HAZARDOUS WASTE
I. ENVIRONMENTAL GOVERNANCE	I.1.LIFE CYCLE ANALYSIS
I. LIVVINUIVIENTAL GUVERIVANCE	
	I.2. CARBON FOOTPRINT
	1.3 WATER FOOTPRINT
	I.4 ECOLOGICAL DESIGN OF PROCESSES AND PRODUCTS: ECODESIGN AND
	ECOPRODUCTS

Planning			
	Class hours	Hours outside the classroom	Total hours
Studies excursion	18	40	58
Case studies	7	5	12
Autonomous problem solving	9	20	29
Lecturing	17	33	50
Essay questions exam	1	0	1
*The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.			

Methodologies	
	Description
Studies excursion	Practices Practice 1
	Waste water treatment plant (EDAR - Pontevedra)
	Practice 2
	MSW treatment plant (SOGAMA - Cerceda)
	Practice 3
	Cogeneration and treatment of effluents (ENCE)
	Practice 4
	Cogeneration and waste management (ECOWARM- Bastabales)
	The A01 compatition will be developed in the field of industrial facilities visits
Casa studies	The A91 competition will be developed in the field of industrial facilities visits.
Case studies	Individual or paired an individual chosen within the contents of the program for the elaboration of a situation or concrete case that will be presented publicly.
Autonomous problem solving	This is to present flow diagrams of the facilities visited during the course
Lecturing	These are theoretical classes in the classroom

Personalized assistance		
Methodologies Description		
Studies excursion	These are views of industrial facilities	
Case studies	It is a practical work and present it publicly	

Assessment			
	Description	Qualification	Training and
			Learning
			Results
Studies excursion	Student attendance at practical outings is valued	10	
Case studies	The work is valued and evaluated by the classmates themselves after its	20	
	presentation and by the teacher who will take into consideration all the		
	factors indicated in the supervised work section.		
Lecturing	Class attendance will be valued.	10	
Essay questions	The knowledge acquired during the development of the subject will be	60	
exam	evaluated.		

Other comments on the Evaluation

All the competences collected in the subject are evaluated jointly according to the process described above

The theoretical exam will consist of two parts: a theoretical part that will account for 40% of the grade and a practical part that will account for 20%.

In the case of waiving the continuous evaluation, 100% of the grade will be determined by the final exam

Exam dates are available on the School website (official calls)

Sources of information	
Basic Bibliography	
Sánchez, Antoni, De residuo a recurso , 1, Mundi Prensa, 2014	
Gil, Manuel, Depuración de aguas residuales, 1, CSIC, 2013	
Seoanez, Mariano, Manual de aguas residuales industriales, 1, Mac Graw Hill, 2012	
Picoraio, Simona, Gestión de residuos Urbanos, 1, CEYSA, 2016	
Seoanez, Mariano, Tratado de la contaminación atmosférica, 1, Mundi Prensa, 2012	
Complementary Bibliography	

Recommendations

Other comments Eligible subject for dual training projects as established by the memory of the degree.